ELECTRONICS & DEFENSE

GSG WAVEFRONT Software-Defined CRPA Simulation System

A Powerful and Proven Platform

Protecting your GNSS systems from jamming and spoofing is more critical now than ever before. Leveraging the same proven software-defined architecture as our GSG-8 platform, Safran developed GSG Wavefront to enable easier and more affordable CRPA receiver testing.

Why Develop a New Wavefront Simulator?

- High-end PNT systems are using AJAS
 very few Wavefront simulators exist
- Existing simulators are not prepared to adapt to future needs (Alternate PNT signals and sensors)
- Jamming/spoofing is often not a part of the solution - the user must integrate additional hardware
- Scenario creation is complicated and limited - requiring trained, expert PNT engineers

Safran Electronics & Defense is with you every step of the way, building in the intelligence that gives you a critical advantage in observation, decision-making and guidance.

Technical Specifications

Pictured Above: 7-Element GSG Wavefront System

STATUS QUO

- Calibration takes hours/days and is not automated
- Physically large and not scalable
- Custom one-off solutions
- Limited or no API control
- Limited spoofing and repeating capabilities

Scalability

4 to 16 tri frequency antenna elements

4 outputs / element (Ex. GNSS L1/L2, Interference L1/

L2 - enables higher dynamic range)

Software-Defined System

IQ generated in GPU not FPGA

RF generated in SDR (Software-Defined Radio)

Flexible, affordable, scalable

Rapid development cycles

Operational Features

1,000 Hz iteration rate

Simulate 600+ signals/element

Space simulation: LEO and GEO

Multipath (3 echo's/PRN/Code)

PXE (pixie) system architecture - single computer operation

Continuous phase calibration

Real-time automated calibration

Phase Offset: ±1° 1σ

Pictured Above: Wavefront Node, generates IQ data per each element

WITH GSG WAVEFRONT

- Automated calibration process takes minutes!
- Commercially available
- Easy to use and calibrate
- Robust API: C++, C#, and Python
- Jamming, spoofing, and repeating

Automatically Calculate

Propagation delays

Doppler shift due to dynamics

Power loss

GNSS Simulation – 1000 Hz
GPS C/A, L1C, L2C, L5, P
GLONASS G1 and G2
Galileo E1, E5a and E5b
BeiDou B1 and B2
SBAS L1 and L5

Interference

Integrated into the software (GUI and API)

Simultaneously simulate multiple threats

Dynamic transmitters, user-defined waveforms

Jamming, spoofing, repeating

Choose and Control

Interference location and trajectory

Antenna locations, pattern and orientation

Safran Electronics & Defense safran-electronics-defense.com

